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NOTATION

Transverse displacement
Longitudinal displacement
V:i-

Mass per unit length
Beam length

Thickness of viscoelastic core
Thickness of i®h layer

Beam width

Elastic (Young's) modulus of e layer
. . th
Mass density of i layer

E, (1 + i8) = complex dynamic elastic modulus of
viscoelastic core

Elastic storage modulus of viscoelastic core
Elastic loss tangent of viscoelastic core

G, (1 + iB) = complex dynamic shear modulus of
viscoelastic core

Shear storage modulus of viscoelastic core
Shear loss tangent of viscoelastic core
Radial frequency

Moment of inertia of the gth layer

Compressional spring constant

Compressional composite frequency

Mechanical impedance of beam

Applied force




€, M complex flexural wave number for transverse
compressional damping model

810 LY 63 complex flexural wave number for shear damping
model
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ABSTRACT

The effects of transverse compres-
sional damping on the vibratory response
of three-layer elastic-viscoelastic-elastic
beams are considered both analytically and
experimentally in a mechanical impedance
format. The relative importance of this
type of damping is assessed by comparison
to shear damping mechanisms inherent in
the composite using the Mead and Markus
model. Results suggest the effects from
compressional damping have a relatively
narrow frequency bandwidth centered at the
compressional (delamination) frequency, wc,
of the composite. Compressional damping
is shown to have a minimal effect on the
transverse dynamic response of thin three-
layer damped beams for frequencies signifi-
cantly less than wge, where a shear damping
model provides a better description of
dynamic response.

ADMINISTRATIVE INFORMATION

This report represents work performed under the Explora- '
tory Development Acoustical Program, Silencing for Auxiliary ¥
Machinery Systems Program Element/Task Area 62543N, SF 434-52-
702, Task 18182, work Unit 1-2740-111.

The cognizant NAVSEA program manager is Mr. S. G.
Wieczorek, NAVSEA (SEA O37T):; the DTNSRDC program manager is
Dr. Y. F. Wang (Code 2740).

INTRODUCTION
The transverse vibratory response of elastic-viscoelastic-
elastic laminated beams has received considerable attention

since Plass™ and Kerwin® examined the potential of this compo-
site in vibration control. Many investigators® ™ have studied
the dynamic response of the three-layer damped sandwich beam,
concentrating predominantly on the broad-band damping inherent
in the composite associated with shear damping. In a classic

*A complete listing of references is given on page 25.
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papera on this subject, Kerwin analyzed the shear damping in
an infinitely long, simply supported beam with a soft visco-
elastic core and a thin, stiff constraining layer, deriving an
expression for the complex flexural stiffness of the beam
section. DiTaranto® extended Kerwin's work deriving a sixth-
order differential equation of motion in terms of dynamic
longitudinal beam displacement, u(x). In a later paper, Mead
and Markus* derived a sixth-order differential equation in
terms of the transverse motion of the beam, which is an impor-
tant factor in experimentally validating the model. 1In the
same paper, Mead and Markus also examined the form of the
boundary constraints on the composite for many widely used

end conditions and showed that the eigenvalues for such a
system are generally complex for boundary conditions other
than simply supported. Lu and Douglas® evaluated the Mead and
Markus model in several experiments and showed that it ade-
guately predicted the damped resonance frequencies and damping
inherent in the low-order modes of two relatively thin three-
layer laminates.

An important feature of the above-mentioned work was the
assumption that transverse displacements, w(x), of all points
on a cross section are equal. For thin composites where the
product of the viscoelastic layer thickness and the constrain-
ing layer thickness is small, shear damping appears to the
major factor controlling the resonance response of these beams
in the audiofrequency spectrum. However, as the thickness of
soft (E, < 10° N/ma)* viscoelastic cores and constraining
layer increase, compressional damping can be expected to play
an increasingly important role in the dynamic response of such
structures. This report examines, both analytically and exper-
imentally, the contribution of transverse compressional damping
on the transverse dynamic response of the three-layer damped

*pefinitions of abbreviations used are given on page vii.

2




ol o %

3 A" S s g g T
WD e e v e Lo A

‘beam and compares the importance of this form of damping with

shear damping by using the model developed by Mead and Markus.

ANALYTICAL FORMULATION
The three-layer damped beam consists of two elastic-face
layers separated by a thin, relatively soft viscoelastic
damping core. Figure 1 depicts the geometry and coordinate
system utilized in this report.

13
ELASTIC CONSTRAINING LAYER iz
——————————————————————————————————— % P
- ———————"—"— VISCOELASTIC LAYER ——————————H~77 Y
ELASTIC LAYER
‘w
poelwt
-
Y u |
|
= [
x 2 :
]
x =0

Figure 1 -~ Geometry and Coordinate System for the Fully
Constrained Elastic-Viscoelastic-Elastic Beam

The case of fixed-free (cantilever) boundary constraints is
considered with a concentrated sinusoidal load, Poeiwt,
applied at the free end to facilitate comparison between ana-
lytical and experimentally derived spectra. The dynamic
response of this composite is examined in a mechanical imped-
ance format with m. the mass per unit length of the ith layer;

E; the elastic (Young's) modulus of the i

layer:; Ev* =
E, (1 + 18 ) the dynamic complex modulus of the viscoelastic
core, where E, is the elastic storage modulus and & the elastic

loss tangent; and G * = G, (1 + iB) the dynamic complex shear

3




modulus of the viscoelastic core where, in a similar manner,
G, is the shear storage modulus and B the shear loss tangent.
The complex elastic and shear moduli are assumed to be both
temperature- and frequency-dependent, and the loss tangents
of the elastic layers are assumed negligible. No restric-
tions are placed on the densities and moduli of the layers,
except that the viscoelastic layer is considered soft com-
pared to the elastic layers, i.e., E, <L E;, and its mass is
n1egligible. The elastic layers need not be identical. The
time-dependent equations of motion discussed herein assume
steady-state harmonic displacements.

TRANSVERSE COMPRESSIONAL DAMPING MODEL

The equations of motion for the three-layer damped
laminate depicted in Figure 1 and based only on compressional
damping are derived by assuming that the viscoelastic damping
core is linear and relatively soft so that it can be modelled
as a complex compression spring, and the rotary inertia and
shear deformation of the elastic layers are negligible so that
the Bernoulli-Euler beam theory can be employed. With these
assumptions, the equations of motion for this composite can
be written as two coupled fourth-order partial differential
equations:

3t 62w1
- E-I = k¥ (w, = w + m, —5
s S i A L R
(1)
uy 2
0w 0w
e ek 4 -

where w,(x) is the transverse displacement of the s layer,
I; the moment of inertia of the ith layer, and k* is the
viscoelastic spring constant, (Ev*b)/(tv). Assuming harmonic

m




time dependence, these equations can be combined into a single
eighth~order differential equation with complex coefficients
for the basic cantilever beam (i.e., layer 1):

d8wl(x) k* -~ mlw2 k* - m3w2 duwl(x)
+ +
axd E I, By Iy ast
(2)
4 2
m,w - k*w- (m, +
Y ! iy ¥ ) wy(x) = 0

E1I1E313

The response of the constraining layer can be written in terms

of the response of the cantilever beam as:

k* - m1w2 duwl
WB(X) = F wl(x) + ElIl —E;E (3)

Using a progressive wave approach, the solution for equation
(2) can be written in terms of the complex wave numbers e and

L as:
B eX -€xX iex -iex
wy(x) = Aje”™ + Age + Age + Aje
+ Ase“x +age ™* + 11\7e”“x + age” ¥
and
w3(x) =M [Aleex + A2e—ex + A3el€x + Aue-lex]
)
+ N [Ase“x + ageHE 4 age™¥ 4 Age‘“‘x]
5
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‘where

E 2 1/2711/4
€ = - —(%——K)

r 1/27 1/4
i)

nje

2
k* - m,w k* = myw
P : il e

Elll E313

mlT}?u - k* w? (my + m3)
EIIl E313

and

k* - m,w
1 u]

For fixed-free boundary conditions, the four equations of
constraint for layer 1 require:

Wy (¢) =0

awl
ow ol
x=4

i
;
|
|
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and
3 iwt
i
gL

x=0

As indicated, the applied concentrated sinusoidal loading is
accounted for implicitly in the shear boundary constraint at
x = 0.

The four boundary constraints for layer 3 require:

2 2
d “w 3“w. :
——52 = 0 and —;32 = 0at x= 0and x =1 (6)
X 9

The shear condition evolved from assuming the effective shear
force, 8k _c¢ (w3 - wl) transmitted by the viscoelastic layer
at the ends of the laminate is zero.

i i i k*sA) _ 1
(T.e., lim 5keff + lim (—E;—) = O) |
A+ O gA »+ O

These equations of constraint can be placed in a matrix repre-

sentation to solve for the complex coefficients, A, by
standard matrix inversion methods or [M] ° [A] = [P]. These
coefficients can then be determined at each frequency of con-
cern by multiplying the inverse of the constraint matrix, [M],
and the loading matrix, [P]. From this information, the
mechanical impedance at any arbitrary point on the surface

of the cantilever beam (layer 1) can then be written:

P . :
o €X -€X leX -1l€X

: . -1
-ux 1ux ~1uX
+ A5e + Age + A.re + A8e ]

" — , . P—




and the transfer impedance to layer 3 as

P , 2
o] exX -eX 1€EX -1€X
2 X, w) = e e
3(. ) Tu—,{M[Ale + Ay + Age + By ]
-1
X -ux i -iux
+N[A5e“ + age™ +A7e”x+A8e"“]}
(7)
— 1 -~ -
6:3 - -ied ic? W -ua - in? Aﬂ Po/E1y
4:2 c2 -2 -c2 u2 u2 —u2 2 Ay (o]
.CL .—el' aiet .-it(« eu-(. ‘-ul- ..bl(« e-iuC A, 0
w't |t seedet | _jeemict | ugHt {-uett inaibt |_guemint Ay 0
Me2 Me2 -Mc2 -Mc2 N2 2 -2 -nu2 Ag 0
Med -Me” -ime3 ime3 W -3 -imd imd Ag 0
Me 20‘ Lo 2e el me 201”' -Me 2e"ic ¢ maeul' m2°-ul. -mze int _“‘2‘- iut Ay 0
LH.:?."’ -Mede~t] —imedeltt| imedemitt] pleMt | -mleHt -imdeint im;e-iu: Lag] L ©°

From this analytical model, the dynamic response of a damped
three-layer laminated beam containing only compressional damp-
ing can be studied by examining the mechanical impedance
spectrum of several beam geometries and material properties.
Figure 2 shows the mechanical impedance spectra generated from
this model of a selected case: a steel laminate with geometry
outlined in the figure, and a viscoelastic damping core with
an elastic storage modulus of 6.89 - 10® N/m? (1000 lb-in'e)
and several values of elastic loss tangent. As is evident
from this figure, the damping in this composite is negligible
except for the spectral region between 250 and 2000 Hz centered
at 500 Hz. 1In this region, the damping is strongly dependent

8




on the elastic loss tangent. This result can be anticipated
from consideration of a model which treats the face layers as
lumped masses and the viscoelastic layer as a complex distribu-
ted spring. This model gives rise to a compressional frequency
inherent in composite working to delaminate the face layers:

* 1/2
E 1 1 X I
e (tv ) (pltl ) G e

v

since, according to this model, the viscoelastic layer
receives the greatest dynamic compressional strains in this
spectral region (which, in turn, is the primary mechanism
converting vibratory energy to heat), it is to be expected
that vibrational modes of the composite occurring near this
frequency would exhibit a high degree of damping for high-
loss viscoelastic materials.

TTTTTT

MECHANICAL IMPEDANCE
PHASE ANGLE (degrees)
(-}

T e EDR

20 1 L L g il
10— T T =13
= BEAM GEOMETRY }
zli [ 4 = 04921 m (19.375 in.)
E ty = 0.0178 m (0.70 in)
o 10? t, = 00127 m (0.50 in)
@ ty = 0.0121 m (0.475 in)
- €y = E3 = 195 x 10'7 N/m
" ” =P- 7700 k./m:
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€
g
o
¥ 100
-
1
e
; 107
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- . &= ., m . - e
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20 100 1000 5000
FREQUENCY (Hz)

Figure 2 - Transverse Driving Point Mechanical Impedance and
Phase Angle Spectrum for a Three-Layer Damped Beam,
Fully Constrained Compressional Damping Model
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DISTRIBUTED MASS-VISCOELASTIC SPRING-MASS SYSTEM

Since the dynamic response of the one-dimensional mass-
complex viscoelastic spring-mass system can provide insight
to both understand and interpret the results of the trans-
verse compressionally damped three-layer beam models described
above, as well as to evaluate the dynamic complex elastic
(Young's) modulus of linear viscoelastic materials, a brief
analytical development is presented below. Assuming a mass-
less complex viscoelastic spring, the driving point mechanical
impedance of mass 1l can be written as:

le(w) = J. Wmq +—i-1——(3 (9)
wm, ~ K

and the transfer mechanical impedance from a sinusoidal
driving force applied at mass 1 to the velocity response of
mass 2 as:

R B
Zyp(W) = ~i| 55— w7 - (my +my) w (10)
The distributed viscoelastic layer can be shown to behave as
a simple lumped spring from consideration of the potential

energy stored in an infinitesimal section

av, (V) = ax*, (x, - %,)° (11)

*The kinetic energy of the v1scoe1ast1c layer can be shown
to be: T(V) = (1/6)(Py/g)ty(Xp - % and then factored into
the system Lagrangian to obtaln moélfled equations of motion,
if desired.

10




where

e B bdyj_:= E; (1 +i8) b dy;
t'V tV

The total potential energy stored in the viscoelastic layer
can be obtained from integrating along the length of the
lumped system

av, = T (12)

1 ; L
J‘ EV(1+16)b
(] v

so that the lumped elements of this system can be identified

as:
1 +1i8)D
e E, ( is)
ty
a Pange
‘ From examination of equations (9) and (10), it is seen that

the dynamic response of mass 1 exhibits an antiresonance at

wA* =Vk*/m2 and a resonance at:

s . ea k* k*
W =V m *m, (14)

while mass 2 exhibits a resonance at the same frequency.

Figure 3 graphically shows the impedance response character-
istics of this system. As is easily seen, placing the lumped
elements of equation (13) into the expression for the reso-

! nance compressional frequency yields

i1




. 1/2
E, (1 + i8) 1 1

W * = +
¢ ty ("1"1 °2t2)

This equation identifies the spectral band where transverse
compressional damping can be expected to dominate the dynamic
response of distributed structures incorporating constrained

viscoelastic layers.

k ’
g k* //
= . Z4(w) /

2

Q !
- |
" |
3 -
- |
<

o |
a |
(-9

: = |

2 - |
3 |

E z : }

5 . \!
w
, g . \;
3 |
| |
il |
wA -
FREQUENCY
. ea Figure 3 - The Mechanical Impedance Magnitude Response

of the Distriouted Mass-Viscoelastic/
Spring-Mass System

SHEAR DAMPING MODEL

The equation for transverse motion for the three-layer
damped laminate, based only on shear damping, was derived by
Mead and Markus? assuming:

12
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1. ' The shear strain is constant across the depth of the
damping core which is linearly viscoelastic.

2. Shear strains in the face plates and longitudinal
stresses in the core are negligible.

3. Transverse direct strains in the core and face plates
are negligible so that transverse displacements of all points
on a beam cross section are equal.

4. The shear stress in the core acts uniformly between
the midplanes of the face plates.

From these assumptions, a sixth-order partial differential
equation for the damped laminate subjected to a concentrated
sinusoidal loading was derived* in terms of the transverse

displacement variable, w:

6 4 4
d°w d'w m O'w mg aaw

-g(l +Y + 0 —5—5 = g 15
o s ) 3% Dt ax2at? Dt at (13)

where

d2 ( EltlEB?3 )

L 'D'; Ejty) + Exty

a =t +1/2 (tq +1-3)
(E1t13 + 331:}3) b

i 12

13




Again, a progressive-wave solution for this equation can

be written in terms of the complex wave numbers 8.’ 85’ and 63'
w(x) = cle‘slx + c2e"5:Lx -+ c3ets2x + cue"'62x
+ cge®3* + cgeO3* (16)
where
1/2
61=[Y1 +Y2-§ (1 +Y)]
Y, + Y Y, = Y 11/2
o= [l Yy (2l § 1m0 ]
v + Y2) (Yl - Y2> g 1 1/2
63=[—< ) - 1 ) ﬁ-j(l.’-y)_}

g = -2 245 (1 +y)°
2 2
gagg‘”:_g-%—gu +y)%‘;’—-§—,-g3 (1 +¥)




For cantilever end conditions, the equations of constraint
require (at the free end) the moment, ¥, is zero or

D 4 2 2

t d'w d"w mw

X=—\- +g9 (1 +Y —§+-—w>=0
9 ( ox ) ox Dt

the shear force, S = 3X/9x equal the applied concentrated
force or

D 5 3 2 .
t d-w 3°w mw- Ow iwt
S=—-—+g(1+Y)-——+——>=Pe
( ax3 Dt ox o

and the longitudinal face plate displacement, u(x), are unre-
strained. These conditions reduce to the simple form at

x = O:
iwt
ﬁ= O 33W=.P_°_e_. and_n.auw__i___ 0
ax2 B;: Dt ox Dt

At the fixed end, the equations of constraint require:

w(t) = 0; ?’_:‘i)m-x, = 0; and u(t) = 0

The longitudinal displacement can be described in terms of
the transverse displacement for a concentrated dynamic load
by the expression:

-D 5 >3 =
t l1 3w _Yow _(mw 3w
u(x) = (Eltld) o ax® 9o ( g ¢ Y) 3% (17)




— e = —— -

These equations can be placed in a matrix representation and

solved for the complex coefficients, Cp» in a manner similar to

that described in the compressional damping model:

F -y —
3 3 3 3 E #
5,2 -8, 55 -5, b -633 clw P,/D,
2 2 2 2 2 2 .
5, 8, 8, 5, by by cy 0
Ry Ry Ry Rp Ry Ry 3 e
[ ] jo0= 0. - PR
8 -8 6 L -
e 1* e 1t e at e 82t ebBL e b Cy 0
') il 5,0 -5 b b2l e o
610 1 -61. 1 620 2 -520 2t 630 3 -530 3 c5 0
642 whnit 3 -5 - v e
s,e 9 -s,e 1 S,e 2t -Sye e s3e63£ i's3° gk S 0
_ i SR el
(18)
where
R, = 0 4 - E‘ﬁ
B Tt
R, = 6 u - _mw2
- ol B
o M’E
e i M




5
8 2
2 Y ) (mw \
S . = ——— ==0§ - + Y )
2 2 2 2 2
g 2 D.g ]
and
5.2 2
Y . 3 mw
S=—2———5 = + Y bo)
e (Dt92 ) 5

Upon determining the ¢, coefficients by matrix inversion, the
mechanical impedance at an arbitrary point on the laminate can
be calculated from the expression:

51}{ -61x X

Po 62
z(x, w) = 35 \Ce + Cge + Cye
~6ox b3x ~65x | 71
+ Cye + Cge + Cge ) (19)

Previous papers®*~® on this subject have shown that shear
damping is a broad-band phenomenon strongly dependent on the
shear loss tangent of the viscoelastic layer.

EXPERIMENTAL EVALUATION

Three damped sandwich beams were constructed to serve to
evaluate the relative importance of compressional and shear
damping in elastic-viscoelastic-elastic beams. Two beams were
designed with the compressional frequency, ., located in 20-
to 5000-Hz spectrum, and a third beam was designed with W,
above 5000 Hz. The elastic face layers of all beams were con-
structed from steel. Specimens 1 and 2 incorporated an acryl-
lic base viscoelastic material with a complex dynamic shear
modulus in the 20- to 5000-Hz spectral region that can be

17




approximated (assuming thermorheologically simple material
behavior ) by the expression:

G, = (1.42 x 105) 0-49H in(w/am) (N/me)

(20)

B = 1.46

Specimen 1 contained a viscoelastic layer thickness of
0.00686 m which placed its composite compressional frequency
near 900 Hz, and specimen 2 contained a viscoelastic layer
thickness of 0.000102 m which placed its composite compressional
frequency outside the spectral range of the experiments reported
herein. The complex dynamic elastic modulus used to generate
the analytical compressional damping spectrum for specimen 1
was obtained from assuming incompressibility and a real
Poisson ratio (i.e., E, = 3G  and ¢ = B).

Specimen 3 incorporated a medium-density, closed-cell,
neoprene foam layer with a complex dynamic elastic modulus that

can be approximated by the expressions:

0.40414n(w/2n
E, = 1.078 - 10% gl (N/m?)
(0.8 20 Hz < w/2y < 60 Hz  (21)
s = | 10.47e-0-6284n(0/21) 60 gy ¢ w/en < 150 Hz
| 0.45 150 Hz < w/27 < 500 Hz

The complex dynamic elastic modulus of the neoprene foam
(equation (21)) was obtained from a series of resonance mass-
spring experiments. The measurements to determine the expres-
sions in equation (20) were obtained from a commercial
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apparatus which utilizes dynamic stress-strain and related
phase-angle measurements. The thickness of the foam layer was
0.0127 m. The compressional frequency of this composite is
located near 200 Hz.

The cantilever test fixture used to mount these beams was
evaluated by comparing the measured mechanical impedance of
an undamped simple beam with Bernoulli-Euler theory. Figure 4
shows the 20 to 5000 Hz mechanical impedance spectrum of a
steel beam 0.0178 m thick, 0.0508 m wide, and 0.4921 m long.
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Figure 4 - Transverse Driving Point Mechanical Impedance
Spectrum of an Elastic Beam, An Evaluation of
Experimental Boundary Conditions
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with this test fixture, excellent agreement was observed
between measurement and theory as to values for both resonance
and antiresonance frequencies. The dynamic range between
associated resonance-antiresonance pairs for the measured
steel beam spectrum exceed 40 dB throughout the 20- to 5000-Hz
spectrum increasing to in excess of 100 dB for the low-order
vibrational modes. All measured spectra discussed in this
report were obtained from transducers which had a negligible
mass loading (<0.004 kg) effect on the structure.

By using the methods described above, a 20- to 5000-Hz
mechanical impedance and associated phase-angle spectrum was
obtained for test specimens 1, 2, and 3 which are presented in
Figures 5, 6, and 7, respectively.
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DISCUSSION

The utilization of structural damping methods to control
dynamic structural response has become increasingly widespread
in recent years due to increased performance standards for
vehicles as well as stricter environmental standards. Con-
strained damping is a major proven structural damping tech-
nique with high damping efficiencies. This report has
attempted to isolate the major damping mechanisms inherent
in constrained composites in order to ascertain their potential
and provide some insight into the effective design of such
structures. For this reason a cantilever beam configuration
was selected along with a comparison of individual analytical
models incorporating only one of the major damping mechanisms.

As the results indicate in Figures 2, 5, and 7, compres-
sional damping can provide significant attenuation in the
vibrational energy of resonant structures in a narrow frequency
band centered at the compressional frequency of the composite.
In addition, the elastic loss tangent of the viscoelastic layer
is an important factor controlling the bandwidth and amount of
effective vibratory attenuation. Examination of Figure 6
demonstrates that, for frequencies significantly removed from
W, compressional damping provides little attenuation to the
dynamic structural response.

Within the stated assumption, the model developed for
compressional damping in this report provided excellent agree-
ment with the measured data in the spectral regions governed
by this mechanism. Finally, additional support for the Mead
and Markus model of shear damping was provided by the agreement
observed between experiment and theory for specimen 2, espe-
cially the mechanical impedance magnitude and relative bandwidth
near the resonance frequencies of the composite which is a
measure of the modal damping inherent in the structure.
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CONCLUS IONS

It is concluded that shear damping is a broad-band
mechanism which adequately, for most engineering purposes,
describes the damping inherent in the transverse dynamic
response of elastic-viscoelastic-elastic beams, outside the
spectral influence of compressional effects. Inside this
spectral band the relative displacement between the elastic
layers of the composite must be considered in dynamic

calculations.
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